Поиск по сайту Поиск
Экскурсии в дата-центр: как мы провели 300 человек на закрытый объект и почему нас уже не остановить

Отвлекитесь немного от экрана и посмотрите на вещи, которые вас окружают. Стол, кружка, лампа, смартфон, клавиатура — всё это материальные предметы, к которым вы можете прикоснуться. Скорее всего, перед их покупкой в магазине вы попросили продавца-консультанта показать товар и дать возможность его потрогать.

Редакция 9 августа 2019 359
Стэнфордский курс: лекция 3. Функция потерь и оптимизация

На прошлой лекции мы разобрались, как работает классификация изображений. Что же может «потеряться» в процессе и можно ли этого избежать? Из сегодняшнего урока вы узнаете, как сделать обучение классификатора более точным и эффективным с помощью функции потерь и оптимизации.

Редакция 9 августа 2019 360
Как ИИ отслеживает небезопасное поведение водителей

Искусственный интеллект может помочь каршеринговым сервисам и таксопаркам сделать поведение водителей на дороге безопаснее. Например, предупреждать их, если они отвлеклись от дороги. В этой статье мы делимся идеей, как с помощью свёрточных нейросетей отследить небезопасную деятельность за рулём и предотвратить возможные ДТП.

Редакция 6 августа 2019 347
Многозначная классификация с помощью Keras

Можно ли обучить нейросеть делать не один, а сразу несколько прогнозов? Этот вопрос возникает, когда нам необходимо классифицировать изображения по двум, трём или большему числу меток. Например, чтобы определить сразу тип одежды (рубашка, платье, брюки и так далее), цвет и ткань.  В этом руководстве мы расскажем, как создать многозначную нейронную сеть с помощью Keras.

Редакция 2 августа 2019 352