Поиск по сайту Поиск

Как ИИ отслеживает небезопасное поведение водителей

Искусственный интеллект может помочь каршеринговым сервисам и таксопаркам сделать поведение водителей на дороге безопаснее. Например, предупреждать их, если они отвлеклись от дороги. В этой статье мы делимся идеей, как с помощью свёрточных нейросетей отследить небезопасную деятельность за рулём и предотвратить возможные ДТП.

Все автомобилисты так или иначе сталкиваются с пробками на дорогах. Монотонное движение побуждает лишний раз достать смартфон и написать в чат о своих проблемах, полистать новостную ленту или отвлечься разговором. Невинные на первый взгляд занятия могут стоить человеческой жизни. В США по этим причинам происходят 20% аварий. В русскоязычной терминологии проблема носит название «рассеянное вождение».

В новой статье MIT экспериментально показано, что наиболее сильным фактором, влияющим на аварийность, являются проблемы периферийного зрения. Другими словами, простое отведение глаз на 20 градусов от центра дороги снижает реакцию на порядок сильнее, чем высокая когнитивная нагрузка, например, при распараллеливании мышления.

Что, если научиться выделять небезопасное поведение и вовремя предупреждать о нём водителей во избежание происшествий? Звучит, как неплохая задача классификации для свёрточных нейронных сетей. 

Рассмотрим, как создать отслеживающую рассеянных водителей нейросеть с помощью Python, Keras и Tensorflow. Если раньше вы не работали с этими инструментами, рекомендуем сначала ознакомиться с нашей статьёй «Как начать работу с Keras, Deep Learning и Python». В конце материала можно скачать и посмотреть исходный код.

Импортируем библиотеки

В качестве бэкэнда нейросети будем использовать Keras и Tensorflow. Импортируем необходимые библиотеки:

Строка 3 устанавливает tensorflow как бэкэнд для keras, а строка 4 скрывает все логи.

Импорт набора данных

Файл driver_imgs_list.csv содержит список всех изображений из обучающей выборки, а также ссылки на людей и имена классов. Имя класса указывает на вид активности человека на фотографии.

https://cdn-images-1.medium.com/max/800/1*ByrPGJEuWD8xkz8hRgyCpA.png

Первые 5 строк набора данных

Обзор изображений

Перед обработкой изображений полезно хотя бы частично просмотреть датасет, поэтому отобразим по одной фотографии из каждого класса. Метки classname не содержат никакого информативного описания. Чтобы понимать, что означают классы c0, c1 и так далее, создадим словарь и добавим заголовки к каждому из них:

Каталог train содержит в себе 10 вложенных папок, каждая из которых соответствует изображениям одного из классов. Итеративно пройдём по всем каталогам и отобразим первые фотографии в них. 

Строка 10 выводит 10 изображений, организованных в коллаж (5 по вертикали и 2 по горизонтали). image_count определяет число отображаемых фотографий в диапазоне от 1 до 10.

https://cdn-images-1.medium.com/max/800/1*bb_x6o9QZMh4y4D-Mg4AkA.png

Различное поведение водителей

Строим модель

Создадим свёрточную нейронную сеть с тремя слоями Conv2D (за каждым располагается слой MaxPooling2D), 1 слоем Flatten и 3 слоями Dense. Поскольку проблема является многоклассовой, последний слой Dense содержит 10 нейронов, а потери определяются с помощью categorical_crossentropy (категориальной кроссэнтропии).


Модель классификатора


Создаём обучающую выборку

Дополним обучающую выборку с помощью функции ImageDataGenerator. Также используем метод flow_from_directory, чтобы считывать соответствующие каждому классу изображения из нужной папки. Разделяем данные на обучающие и тестовые в соотношении 80% и 20%. Обратите внимание, что все изображения масштабируются в вещественный диапазон [0…1] (rescale).

Теперь обучим модель и посчитаем точность и потери.

Обучаем модель

Используем функцию fit_generator:

Модель достигает точности в 97%.

Заключение 

Используя простую свёрточную нейросеть, мы смогли обучить модель и достигнуть 97% точности обнаружения небезопасного поведения водителей. В качестве следующего шага можно улучшить решение, повысив сложность и добавив новые слои в архитектуру сети. Предлагайте свои идеи и делитесь результатами в комментариях!

Исходный код и датасет находятся здесь (размер архива ~4 ГБ).

С оригинальной статьёй можно ознакомиться на портале towardsdatascience.com. Другие решения можно посмотреть в соревновании от Kaggle.

7 советов для работы с небольшими данными

7 советов для работы с небольшими данными

В современном мире считается, что Big Data — ключ к созданию успешных проектов машинного обучения. Но проблема в том, что...
Read More
Квантовые нейронные сети на процессорах будущего

Квантовые нейронные сети на процессорах будущего

Законы квантовой механики в теории позволяют создать новый тип вычислительных машин, способных решать сверхпроизводительные задачи, недоступные даже самым мощным современным...
Read More
Стэнфордский курс: лекция 7. Обучение нейросетей, часть 2

Стэнфордский курс: лекция 7. Обучение нейросетей, часть 2

В шестой лекции мы начали рассказывать про обучение нейросетей: выяснили, как выбрать функцию активации, подготавливать данные, настраивать параметры и следить...
Read More
Нейросеть распознаёт узор вязания по фото

Нейросеть распознаёт узор вязания по фото

Автоматизированным производством сегодня уже никого не удивишь. Но мы попробуем. Один из наиболее необычных примеров автоматических устройств — вязальные машины,...
Read More
Бариста, учитель и работник типографии: кем были сотрудники REG.RU до того, как стали айтишниками

Бариста, учитель и работник типографии: кем были сотрудники REG.RU до того, как стали айтишниками

Сегодня, 30 сентября, День Интернета в России. В честь этой даты мы расскажем семь историй о том, как сотрудники REG.RU...
Read More
Чек-лист, который заряжен на защиту домена

Чек-лист, который заряжен на защиту домена

Время от времени мы сталкиваемся со случаями, когда мошенники уводят домены наших клиентов. Происходит это по самым разным причинам: от...
Read More
Методы распознавания радужной оболочки глаз. Часть 1

Методы распознавания радужной оболочки глаз. Часть 1

Не так давно идентификация людей по радужной оболочке глаз казалась фантастической технологией, использующейся только для защиты суперсекретных военных и правительственных...
Read More
Стэнфордский курс: лекция 6. Обучение нейросетей, часть 1

Стэнфордский курс: лекция 6. Обучение нейросетей, часть 1

В прошлый раз мы обсудили историю возникновения свёрточных архитектур, а также узнали об их устройстве и широких возможностях применения. В...
Read More
Три слова, которые поймут только айтишники

Три слова, которые поймут только айтишники

Если вы не разработчик, но работаете в IT-компании, или в вашем окружении есть программисты, то, скорее всего, часто слышите странные...
Read More
Customer development: почему при выборе идеи нужно учитывать мнение клиентов

Customer development: почему при выборе идеи нужно учитывать мнение клиентов

Вместе с менеджером по продуктам REG.RU Никитой Атучиным разбираем, почему MVP — не всегда хорошее решение для старта бизнеса. Если вы...
Read More